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We investigate by molecular dynamics simulations the validity of the frequency-dependent Stokes-Einstein
�SE� relation in supercooled liquids at different temperatures. The results indicate that the SE relation holds at
intermediate frequencies that correspond to the �-relaxation and the onset of the �-relaxation regimes. Large
deviations, which increase as the temperature decreases, are observed at frequencies well below the frequency
at which the non-Gaussian parameter �2 is maximum. We argue that the breakdown of the SE relation in
supercooled liquids arises from underestimation of the diffusion coefficient due to neglect of correlated
motions.
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Transport of momentum in dense fluids is accomplished
by collisions between particles. On the other hand, diffusion
�transport of mass� is achieved by the displacement of par-
ticles and is, therefore, hindered by collision events. These
opposing contributions of collisions are expressed in the
Stokes-Einstein �SE� relation �1,2�

D� =
kBT

c�a
, �1�

which indicates that the product of the diffusion coefficient
of tracer particles, D, and the shear viscosity of the solvent,
�, depends only on the temperature and not on the system’s
density or pressure. The constant c is a result of the hydro-
dynamic boundary condition at the surface of the tracer par-
ticle and the parameter a is its effective radius. The SE rela-
tion is derived from macroscopic considerations for large
massive particles, at infinite dilution, immersed in a bath of
particles that are much smaller and lighter. Nevertheless, the
relation holds remarkably well for a wide range of systems
including pure simple liquids �3�, molecular systems �4�, and
colloidal suspensions �5�.

A key assumption in the derivation of the SE relation is
that, over long times, particle trajectories are uncorrelated
and stochastic. This allowed Einstein to use a statistical
model �random walk� to relate the diffusion coefficient of a
Brownian particle to the thermal energy and the friction co-
efficient �2�. The combination of this expression with Stokes’
law, which relates the friction coefficient to the viscosity of
the fluid medium, yields the SE relation �1�. Thus the SE
relation should be valid at times longer than the structural
relaxation time of the solvent.

A generalized form of the SE relation that holds at all
frequencies has been proposed �6–8�,

D������� =
kBT

c�a
, �2�

where D��� and ���� are the frequency-dependent diffusion
coefficient and shear viscosity, respectively. In Eq. �2� it is
assumed that the Stokes relation for viscous fluids can be
extended to describe the viscoelastic drag at all frequencies.
This is correct in the limit of purely viscous fluids. In addi-
tion, it is assumed that at all frequencies the diffusion of

particles through a medium occurs by motions in random
directions, uncorrelated with one another. Experimental stud-
ies on a variety of systems show good qualitative agreement
with the frequency-dependent SE relation �6,7�. Quantitative
agreement is found at high frequencies �9,10�.

Validity of the SE relation in supercooled liquids is not
generally expected. This is because over a wide range of
time scales the dynamics in some regions of these systems
are characterized by cooperative motion �11�. This generates
dynamical heterogeneities where the motion of the particles
is not uniform; particles in some regions exhibit large dis-
placements due to correlated, rapid motion, while other re-
gions are much less mobile �12,13�. At times much longer
than the �-relaxation time, the particles exhibit diffusive be-
havior, and particle dynamics are homogenous. Despite long
time homogeneous behavior, experimental �14–17� and com-
putational �18,19� studies indicate a breakdown of the zero
frequency SE relation, which presumably reflects heteroge-
neous behavior at earlier times.

It should be noted that mode-coupling theory �MCT� cal-
culations predict that hard sphere colloidal suspensions near
the glass transition do obey the frequency-dependent SE re-
lation �8�. While MCT is believed to include some level of
particle correlation �via a cage-effect�, it is currently unclear
to what extent MCT captures spatially correlated fluctuations
in supercooled systems �20�. The MCT result predicting the
validity of the SE relation in supercooled systems together
with experimental and simulation results showing SE break-
down in these same systems suggests that correlated motion
is not sufficient to necessitate SE breakdown, but that corre-
lated motion �of some type� is necessary for SE breakdown.

In this study, we perform molecular dynamics �MD� simu-
lations to examine the validity of the frequency-dependent
SE relation over a wide range of frequencies in supercooled
liquids. The generalized SE relation is investigated by ex-
plicit calculation of D��� and ����. Since the magnitude of
dynamical heterogeneities is a function of frequency, this
approach elucidates how heterogeneities both affect the val-
ues of D��� and ���� and effect deviations from the gener-
alized SE relation. The model system consists of a Lennard-
Jones �LJ� binary mixture of large, A, and small, B, particles,
with parameters similar to those used by Kob and Andersen
�21�. Specifically, �AA=1.0 and �AA=1.0 for interactions be-
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tween the A particles and �BB=0.80�AA and �BB=0.5�AA for
interactions between the B particles. The LJ parameters be-
tween the A and B particles, �AB=0.88�AA and �AB=1.5�AA,
ensure the system does not crystallize. Particle masses are
taken to be mA=mB=1.0. The simulations were carried out,
and the results are reported below, in terms of reduced vari-
ables r*=r /�AA, T*=kBT /�AA, and t*= t�kBT /mA�AA

2�1/2. The
interparticle potentials were shifted to zero and truncated at a
cutoff distance of 3.0�AA. The number of mixture particles,
NA=800 and NB=200, and the length of the cubic simulation
box L*=9.410 36, yielded a number density of �*=1.2. New-
ton’s equations of motion were integrated using the “velocity
Verlet” algorithm. Four sets of simulations were performed
at four different temperatures: T*=0.56, 0.66, 0.76, and 2.00.
The initial configurations were taken from simulations of
similar supercooled liquids �21�. The systems were further
equilibrated for at least 107 MD steps. The required tempera-
ture was achieved by multiplying the velocities, only during
the equilibration stage, every 2	105 MD steps, by an appro-
priate constant. In the data collection stage, the simulations
were performed in the microcanonical �N ,V ,E� ensemble.
To allow efficient construction of time correlation functions
on an exponential time scale, we performed simulations with
time steps of 
t*=0.005 and 0.01, and used different time
intervals to correlate properties at short, intermediate, and
long times. For each simulation, the results were obtained by
averaging eight independent runs, starting from different par-
ticle configurations, to obtain better statistics.

The frequency-dependent shear viscosity and diffusion
coefficient were defined by the modulus of the Fourier trans-
form �Filon algorithm� of the corresponding Green-Kubo re-
lations. Namely, the diffusion coefficient was obtained from
the velocity autocorrelation function,

D��� = �
0

�

�vx�0�vx�t��ei�tdt , �3�

and the shear viscosity from the stress autocorrelation func-
tion,

���� = �kBTV�−1�
0

�

��xz�0��xz�t��ei�tdt . �4�

The stress tensor is defined by

�xz = �
i=1

N 	mivi,xvi,z − �
j�i

xijzij

rij

 �
�r�

�r



rij

� , �5�

where 
�r� is the interparticle potential. Both autocorrela-
tions were averaged over the three independent spatial com-
ponents. Prior to the Fourier transform operation, the stress
autocorrelation function was fit to a ten parameter function
of two exponentials and two half Lorentzians. In addition,
the decay of the negative tail �t*�3.5� of the velocity auto-
correlation function to zero was fit to a t−3/2 function
�22–24�. These fits were necessary to avoid numerical insta-
bilities. Nevertheless, the low frequency regime of the
Fourier transformed diffusion coefficient, D���, for
T*=0.56 did exhibit instability. Therefore it was interpolated
�for �*�0.1� to its limiting value at zero frequency �ob-

tained from the Einstein relation, ��r2�t��=6Dt, at long
times� using the cubic spline method. For T*=0.66, 0.76, and
2.00, we found that D��=0� was approximately equal to the
diffusion coefficient calculated from the mean-squared dis-
placement �MSD� at long times.

One of the most obvious characteristics of supercooled
liquids is the dramatic retardation of their dynamics as the
temperature is decreased by a small amount near the glass
transition. This is attributed to the cage-effect, the lack of
vacancies in the first-neighbor shell surrounding a particle
inhibiting large displacements. The retarded dynamics of the
supercooled liquids studied are displayed in Fig. 1. It shows
the MSD and the self part of an intermediate scattering func-
tion �Fs�t*�� for T*=0.56, 0.66, 0.76, and 2.00. The plots of
all functions in this study were averaged over all particles �A
and B� in the system. At high temperature �T*=2.00�, the
liquid largely exhibits only ballistic and diffusive motion.
However, at lower temperatures �T*=0.56, 0.66, and 0.76�
there is an onset of a subdiffusive regime in the MSD and a
�-relaxation regime in Fs�t*�, at intermediate times. These
features are a manifestation of the cage-effect.

Figure 2 displays the non-Gaussian parameter calculated
by �2�t�=3��r4�t�� / �5��r2�t��2�−1. Deviations of �2�t� from
zero represent departures from a Gaussian distribution of
particle displacements �i.e., from Fickian dynamics�. The
time at which �2�t� exhibits a maximum, tmax, is often inter-
preted as the time at which the system experiences the stron-
gest degree of dynamical heterogeneity �25,26�. While for
T*=2.00 the deviations of �2 from zero are very small and
occur only due to backscattering of the first collision event,

FIG. 1. �Color online� �a� MSD and �b� Fs�t*� �for a wave vector
near the first peak of the structure factor, q*=6.6769� as a function
of time, plotted for different temperatures.
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increasingly strong deviations are observed as the tempera-
ture is decreased. The values of tmax

* appear to increase ap-
proximately exponentially with decreasing temperature and
occur at tmax

* =0.8, 14, 66, and 1440 for T*=2.00, 0.76, 0.66,
and 0.56, respectively.

Figure 3 shows the diffusion coefficient and the shear
viscosity as a function of frequency. For all temperatures, the
curves of D��� are maximum during short time ballistic mo-
tion and decay to a constant in the long time diffusive re-

gime. The plots of ���� exhibit an ascent to a constant as the
frequency decreases. In the curves of D��� and ����, the
values of tmax for different temperatures occur at approxi-
mately the same relative position on the decaying-ascending
segments. This indicates that the development of both D���
and ���� are correlated with the changing magnitude of dy-
namical heterogeneity of the system over time. Except for
T*=2.00, the decay of D��� to a constant occurs at larger
frequencies than the ascent of ���� to a constant. The differ-
ence in frequencies increases with decreasing temperature
and for T*=0.56 is about one order of magnitude. This indi-
cates that in supercooled liquids the characteristic relaxation
time for momentum transport is larger than that for mass
transport, and that the difference in relaxation times is
greater in more deeply supercooled systems.

Breakdown of the SE relation in the frequency domain is
shown in Fig. 4 by the value of the expression
T* / �c�a*D*��*��*��*��. Deviations from the value of one
indicate discrepancies with the SE relation. We use the slip
boundary condition �3� c=4 and a weighted average for es-
timating the effective radius of the particles in the system,
a*=0.488. At high temperature, T*=2.00, the SE relation is
valid, and the value of T* / �4�a*D*��*��*��*�� at frequen-
cies smaller than those corresponding to ballistic motion is
approximately 0.95.

It is remarkable that also for the supercooled systems
�T*=0.76, 0.66, and 0.56�, within a wide range of frequen-
cies that cover the entire �-relaxation regime and the onset
of the �-relaxation regime, the SE relation is obeyed to a
good approximation. This is possible because the slope of the
decay of D��� is equal to the slope of the ascent of ���� but
with opposite sign �Fig. 3�. These findings are intriguing be-
cause it has been shown �27,28� that dynamical heterogene-
ities do exist in the �-relaxation regime. Figure 4 thus dem-
onstrates that the existence of dynamical heterogeneity does
not necessitate the breakdown of the SE relation. This is
because even though the dynamics are heterogeneous in this
time regime, all particles are still largely caged: though the
fast particles exhibit increased motion relative to slow par-

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

t*

0.0

1.0

2.0

3.0

4.0

5.0

6.0
α 2(t

*)

T* = 0.56
T* = 0.66
T* = 0.76
T* = 2.00

FIG. 2. �Color online� The non-Gaussian parameter as a func-
tion of time.

FIG. 3. �Color online� �a� The frequency-��*=2� / t*� dependent
diffusion coefficient and �b� shear viscosity, on a log-log scale. The
arrows indicate the frequencies at which �2 is maximum. The inset
in �b� shows the shear viscosity, scaled by �*��*=0�, on a semilog
plot.
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FIG. 4. �Color online� Deviations from the frequency-dependent
SE relation. The value of the expression T* / �4�a*D*��*��*��*�� is
plotted as a function of frequency.
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ticles, they have not yet moved sufficiently to effect a change
in the slope of D��� relative to ����. Only over time scales
on which particles, on average, move at least a particle di-
ameter will the relative slopes change significantly.

Indeed, significant discrepancies from the SE relation start
to develop at frequencies around �or just smaller than� tmax.
At these frequencies, D��� starts to level-off, while ����
continues to rise, indicating that at lower frequencies either
D��� or ���� is larger than predicted by the SE relation.
Supercooled liquids are not purely viscous but also elastic.
Therefore we may expect �positive� deviations of the viscos-
ity from the value predicted by the SE relation to occur at
frequencies where the elasticity of the system is still mani-
fest, i.e., during the �-relaxation regime. However, since this
is not the case, we argue that it is the value of D��� that is
higher than expected by the SE relation. This is likely a
consequence of correlated motion of the “mobile” particles,
which is neglected in simple treatments of the SE relation.
Note that at zero frequency the diffusion coefficient is still
maximally underestimated despite the homogenous stochas-
tic dynamics of the particles in this regime. This is because
in the SE relation, the step size of the random walk model
�which determines the diffusion coefficient� is correlated to
the friction coefficient. However, since the step size in super-
cooled liquids is an outcome of the correlated motion of the
mobile particles, it is larger than expected based on the fric-
tion coefficient. The frequencies at which the deviations
from the SE relation descend to a constant �Fig. 4� imply that
the strongest degree of cooperative motion in the system

occurs at frequencies smaller than the location of the maxi-
mum of �2 �tmax�. Indeed, the largest amplitude of heteroge-
neity as depicted by the bimodal distribution of the self-part
of the van Hove function is observed at times larger than tmax

�29�. Consequently, Flenner and Szamel proposed a new
non-Gaussian parameter that represents the maximum in the
heterogeneity of the system at times later than tmax �30�.

As the temperature decreases, the deviation from the SE
relation at zero frequency increases. The value of
T* / �4�a*D*��*��*��*�� as �*→0 is 0.58, 0.25, and 0.066
for T*=0.76, 0.66, and 0.56, respectively. Thus the product
D� is larger than expected from the SE relation, in agree-
ment with experimental �15,16� and other computational
�18,19� studies.

In conclusion, the values of D��� and ���� for super-
cooled liquids were calculated independently as a function of
frequency to assess the validity of the generalized SE rela-
tion. We find that the SE relation is obeyed at frequencies
that correspond to the caging of the particles, indicating that
dynamical heterogeneities do not necessitate breakdown of
the SE relation. Large deviations start to develop as the par-
ticle motion evolves toward diffusive behavior. Our results
suggest that the breakdown of the SE relation in supercooled
liquids is due to correlation in the dynamics of the particles
that is not taken into account by stochastic models and is not
captured by MCT.

We would like to thank D. R. Reichman for stimulating
discussions.
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